Счетчики








Ухо - орган восприятия звука

Природа наших ощущений

Слуховой анализатор человека представляет собой специализированную систему для восприятия звуковых колебаний, формирования слуховых ощущений и опознавания звуковых образов. Вспомогательный аппарат периферической части анализатора - это ухо.

Различают наружное ухо, в состав которого входят ушная раковина, наружный слуховой проход и барабанная перепонка; среднее ухо, состоящее из системы соединенных между собой слуховых косточек - молоточка, наковальни и стремени, и внутреннее ухо, которое включает улитку, где расположены рецепторы, воспринимающие звуковые колебания, а также преддверие и полукружные каналы. Полукружные каналы представляют собой периферическую рецепторную часть вестибулярного анализатора, о котором пойдет отдельный разговор.

Наружное ухо устроено таким образом, что обеспечивает подведение звуковой энергии к барабанной перепонке. При помощи ушных раковин происходит относительно небольшое концентрирование этой энергии, а наружный слуховой проход обеспечивает поддержание постоянной температуры и влажности как факторов, обусловливающих стабильность работы звукопередающего аппарата.

Барабанная перепонка представляет собой тонкую перегородку толщиной около 0,1 миллиметра, состоящую из волокон, идущих в различных направлениях. Функция барабанной перепонки хорошо отражена в ее названии - она начинает колебаться, когда на нее падают звуковые колебания воздуха со стороны наружного слухового прохода. При этом ее строение позволяет ей передавать практически без искажения все частоты звукового диапазона. Система слуховых косточек обеспечивает передачу колебаний от барабанной перепонки к улитке.

Рецепторы, которые обеспечивают восприятие звуковых колебаний, расположены во внутреннем ухе - в улитке. Это название связано со спиралеобразной формой данного образования, состоящего из 2,5 витков. В среднем канале улитки на основной мембране расположен кортиев орган (по имени итальянского анатома Корти, 1822-1888 годы). В этом органе и находится рецепторный аппарат слухового анализатора.

Как же происходит формирование ощущений звука? Вопрос, который и в настоящее время привлекает пристальное внимание исследователей. Впервые (1863 год) весьма убедительное толкование процессов во внутреннем ухе представил немецкий физиолог Герман Людвиг Фердинанд Гельмгольц, разработавший так называемую резонансную теорию. Он обратил внимание, что основную мембрану улитки образуют волокна, идущие в поперечном направлении. Длина таких волокон увеличивается к вершине улитки. Отсюда понятна аналогия работы этого органа с арфой, у которой различная тональность достигается разной длиной струн. По представлению Гельмгольца, при воздействии звуковых колебаний вступает в резонанс какое-то определенное волокно, ответственное за восприятие данной частоты. Очень подкупающая своей простотой и завершенностью теория, но которую, увы, пришлось оставить, поскольку оказалось, что струн - волокон - в основной мембране слишком мало, чтобы воспроизводить все слышимые человеком частоты, натянуты эти струны слишком слабо, да и кроме того, их изолированные колебания невозможны. Эти трудности для резонансной теории оказались непреодолимы, но они послужили импульсом для последующих исследований.

По современным представлениям, передача и воспроизведение звуковых колебаний обусловлены частотно-резонансными свойствами всех сред улитки. При помощи весьма остроумных экспериментов было обнаружено, что при низких частотах колебаний (100-150 герц, может быть несколько выше, но не более 1000 герц) волновой процесс охватывает всю основную мембрану, возбуждаются все рецепторы кортиева органа, расположенного на этой мембране. При возрастании частоты звуковых волн в колебательный процесс вовлекается только часть основной мембраны, и тем меньше, чем выше звук. При этом максимум резонанса сдвигается по направлению к основанию улитки.

Однако мы пока еще не рассмотрели вопрос, каким же образом происходит трансформация энергии механических колебаний в процесс нервного возбуждения. Рецепторный аппарат слухового анализатора представлен своеобразными волосковыми клетками, которые являются типичными механорецепторами, то есть для которых адекватным раздражителем служит механическая энергия, в данном случае колебательные движения. Специфической особенностью волосковых клеток является наличие на их вершине волосков, которые находятся в непосредственном соприкосновении с покровной мембраной. В кортиевом органе различают один ряд (3,5 тысячи) внутренних и 3 ряда (12 тысяч) наружных волосковых клеток, которые различаются по уровню чувствительности. Для возбуждения внутренних клеток требуется больше энергии, и это является одним из механизмов органа слуха воспринимать звуковые раздражители в широком диапазоне интенсивностей.

При возникновении колебательного процесса в улитке в результате движений основной мембраны, а вместе с ней и кортиева органа происходит деформация волосков, упирающихся в покровную мембрану. Эта деформация и служит пусковым моментом в цепи явлений, приводящих к возбуждению рецепторных клеток. В специальном эксперименте было обнаружено, что если во время подачи звукового сигнала от поверхности волосковых клеток отводить биотоки и затем, усилив их, подвести к громкоговорителю, то мы обнаружим достаточно точное воспроизведение звукового сигнала. Это воспроизведение распространяется на все частоты, в том числе и на человеческий голос. Не правда ли, достаточно близкая аналогия с микрофоном? Вот отсюда и название - микрофонный потенциал. Доказано, что этот биоэлектрический феномен и представляет собой рецепторный потенциал. Отсюда следует, что волосковая рецепторная клетка достаточно точно (до определенного предела по интенсивности) через параметры рецепторного потенциала отражает параметры звукового воздействия - частоту, амплитуду и форму.

При электрофизиологическом исследовании волокон слухового нерва, которые подходят непосредственно к структурам кортиева органа, регистрируются нервные импульсы. Примечательно то, что частота такой импульсации зависит от частоты воздействующих звуковых колебаний. При этом до 1000 герц отмечается практически их совпадение. Хотя более высокие частоты в нерве не регистрируются, но сохраняется определенная количественная зависимость между частотами звукового раздражителя и афферентной импульсации.

Итак, мы ознакомились со свойствами человеческого уха и механизмами функционирования рецепторов слухового анализатора при воздействии звуковых колебаний воздуха. Но возможна передача и не только через воздух, а посредством так называемой костной проводимости. В последнем случае колебания (например, камертона) передаются костями черепа и затем, минуя среднее ухо, попадают непосредственно в улитку. Хотя в данном случае способ подведения акустической энергии иной, но механизм взаимодействия ее с рецепторными клетками остается тот же самый. Правда, при этом несколько различны и количественные отношения. Но в том и в другом случае возбуждение, первично возникшее в рецепторе и несущее определенную информацию, передается по нервным структурам до высших слуховых центров.

Каким же образом кодируется информация о таких параметрах звуковых колебаний, как частота и амплитуда? Сначала о частоте. Вы, очевидно, обратили внимание на своеобразный биоэлектрический феномен - микрофонный потенциал улитки. Он ведь по существу свидетельствует о том, что в значительном диапазоне колебания рецепторного потенциала (а они отражают работу рецептора и по восприятию, и последующей передаче) практически точно соответствуют по частоте звуковым колебаниям. Однако, как уже тоже отмечалось, в волокнах слухового нерва, то есть в тех волокнах, которые воспринимают информацию от рецепторов, частота нервных импульсов не превышает 1000 колебаний в секунду. А это значительно меньше, чем частоты воспринимаемых звуков в реальных условиях. Как же эта задача решается в слуховой системе? Ранее мы с вами, когда рассматривали работу кортиева органа, отмечали, что при низких частотах звукового воздействия колеблется вся основная мембрана. Следовательно, возбуждаются все рецепторы, и частота колебаний без изменения передается волокнам слухового нерва. При больших же частотах в колебательный процесс вовлекается только часть основной мембраны и, следовательно, только часть рецепторов. Они передают возбуждение соответствующей части нервных волокон, но уже с трансформацией ритма. В этом случае определенной частоте соответствует определенная часть волокон. Такой принцип обозначают как пространственный способ кодирования. Таким образом, информация о частоте обеспечивается частотно-пространственным кодированием.

Однако хорошо известно, что подавляющее большинство реальных звуков, воспринимаемых нами, в том числе и речевые сигналы, представляют собой не правильные синусоидальные колебания, а процессы, имеющие гораздо более сложную форму. Как же в этом случае обеспечивается передача информации? Еще в начале 19-го века выдающийся французский математик Жан Батист Фурье разработал оригинальный математический метод, позволяющий любую периодическую функцию представить в виде суммы ряда синусоидальных составляющих (ряда Фурье). Строгими математическими методами доказывается, что эти составляющие имеют периоды, равные Т, Т/2, Т/3 и так далее, или, иначе говоря, имеют частоты, кратные основной частоте. И немецкий физик Георг Симон Ом (которого все очень хорошо знают по его закону в электротехнике) в 1847 году выдвинул идею, что в кортиевом органе происходит именно такое разложение. Так появился еще один закон Ома, который отражает очень важный механизм звуковосприятия. Благодаря своим резонансным свойствам основная мембрана разлагает сложный звук на его составляющие, каждая из которых воспринимается соответствующим нервно-рецепторным аппаратом. Таким образом, пространственный рисунок возбуждения несет информацию о частотном спектре сложного звукового колебания.

Для передачи информации об интенсивности звука, то есть амплитуде колебаний, в слуховом анализаторе имеется механизм, также отличный от способа работы других афферентных систем. Чаще всего информация об интенсивности передается частотой нервной импульсации. Однако в слуховой системе, как это следует из только что рассмотренных процессов, такой способ невозможен. Оказывается, что и в данном случае используется принцип пространственного кодирования. Как уже отмечалось, внутренние волосковые клетки имеют чувствительность ниже, чем наружные. Таким образом, различной интенсивности звука соответствует разное сочетание возбужденных рецепторов двух этих видов, то есть специфическая форма пространственного рисунка возбуждения.

В слуховом анализаторе вопрос о специфических детекторах (как это хорошо выражено в зрительной системе) остается все еще открытым, тем не менее и здесь имеются механизмы, которые позволяют выделять все более и более сложные признаки, что в конечном итоге завершается формированием такого рисунка возбуждения, который соответствует определенному субъективному образу, опознаваемому по соответствующему "эталону".

Виктор Иванович Шостак, 1983 год