Счетчики








Раскрыт секрет самой мощной вспышки на Солнце

Через два года после самой крупной солнечной вспышки за последние тридцать лет наблюдений ученым удалось раскрыть тайны аномалий, которые ее сопровождали, сообщается в пресс-релизе Космического центра Годдарда. Работа ученых принята к публикации в журнале Astrophysical Journal Letters. Взрыв, получивший рекордный класс X9, поразил ученых не только своей энергией, но и крайне необычным поведением выброшенной в околосолнечное пространство материи.

5 декабря 2006 года пятно в восточном полушарии Солнца взорвалось, высвободив энергию сотен миллионов термоядерных бомб. Столь крупное (даже по масштабам солнечной астрономии) событие было встречено на Земле с тревогой, так как после каждой вспышки наша планета подвергается "бомбардировке" потоками заряженных частиц высоких энергий. Эти потоки преимущественно состоят из ионов водорода и гелия, которые возмущают магнитосферу Земли, вызывая полярные сияния в непривычно низких широтах и магнитные бури.

Спустя час после вспышки детекторы двух аппаратов STEREO, предназначенных для изучения взаимодействия Солнца с земной магнитосферой, зафиксировали поток атомов водорода. Это поставило ученых в тупик, поскольку вспышка подобной мощности должна была буквально "сорвать" электронные оболочки с атомов. Кроме этого, первые ионы были зарегистрированы спустя полчаса после начала водородного ливня, что также не укладывалось в стандартный сценарий возникновения солнечной бури.

Тем не менее, оба вопроса удалось разрешить. Как и следовало ожидать, атомы водорода вовсе не пережили вспышку. Выброшенные в процессе ионы водорода и "сорванные" электроны, по словам Ричарда Мевальдта (ведущего автора статьи), снова образовали нейтральные атомы уже на пути к Земле.

Подобный процесс объясняет и вторую загадку. Нейтральные частицы, образовавшиеся вблизи Солнца, сохранили свою высокую скорость и направление, поскольку были не подвержены воздействию магнитного поля звезды. Ионы же под действием этого поля, прежде чем попасть в магнитосферу Земли, описали сложные траектории, затратив, соответственно, большее время.

Исследователи подчеркивают, что подобный ход событий, по-видимому, следует считать нормальным. Лишь отсутствие достаточно мощных вспышек в сочетании с отсутствием на орбите совершенных аппаратов не позволило ранее обнаружить этот эффект, считает Мевальдт.

Для изучения работы генов созданы мухи с флуоресцирующими глазами

Ученые из США и Великобритании создали мух со светящимися глазами и разработали систему, позволяющую отслеживать их перемещение одновременно с яркостью свечения. Новая техника позволяет наблюдать работу генов в реальном времени и на свободно движущемся животном. Подробное описание метода представлено в свободно распространяющемся журнале BMC Biotechnology.

Для решения одной из важнейших задач в нейробиологии - понимания связи экспрессии генов с поведением - биологи использовали зеленый флуоресцентный белок. Интересующий исследователей ген (всего ученые изучали три разных гена, связанных с развитием нервной системы и старением) был связан с геном флуоресцентного белка так, что они экспрессировались одновременно и в равных количествах. После этого для слежения за животным использовалась специальная установка с синей подсветкой, светофильтрами и видеокамерой.

Вопреки расхожему заблуждению, флуоресцентный белок, за открытие которого в этом году была вручена Нобелевская премия по химии, сам по себе не светится. Его молекулы поглощают свет с большей энергией (синий, поэтому экспериментаторы использовали синие светодиоды для подсветки) и испускают свет с меньшей энергией (зеленый). Через установленные на видеокамеры светофильтры синий свет не проходит и потому трансгенные мухи видны только благодаря флуоресцирующим меткам, а не попадающему на них свету. По этим меткам определялось положение насекомых, что позволяло исследовать их активность. Яркость меток указывала на интенсивность экспрессии гена, и тем самым ученые получили возможность посмотреть на взаимосвязь поведения с работой генома.

Из трех исследованных генов один, PAX6, который связан с развитием глаз и нервной системы, оказался ответственен и за регуляцию уровня активности в течении суток. Еще два гена работали в последние часы жизни дрозофилы и закономерным образом вели к снижению активности животного. Как указывают сами авторы, при анализе подобных долговременных процессов (жизненный цикл дрозофилы длится несколько десятков дней) новый метод оказывается особенно ценным и избавляющим от необходимости проводить множество отдельных измерений.