Счетчики








Ученые разработали квантовые наномоторы

Американские физики разработали конструкцию наномоторов. Сверхминиатюрные вращающиеся механизмы используют туннельный эффект - квантовомеханическое явление, которое, предположительно, ответственно и за работу природных наномоторов у бактерий и одноклеточных животных. Экспериментальное подтверждение выводов, опубликованных в журнале Physical Review Letters, пока не получено, но ученые утверждают, что, как минимум, их статья описывает работу природных наномашин.

Туннельный эффект, который лежит в основе работы предложенного механизма, является одним из характерных для квантовых масштабов явлений. Когда в классической механике движущаяся частица попадает в некоторое препятствующее ее движению силовое поле (например катящийся по изогнутому желобу шарик встречает подьем), то она, при недостаточной энергии, останавливается и начинает движение в обратном направлении. Это поведение привычно, но лишь в повседневных масштабах - натолкнувшийся на электромагнитное поле (создаваемое, например, молекулой белка) электрон уже имеет некоторые шансы проскочить даже через то поле, которое было бы непроницаемым для классической частицы.

За счет подобного просачивания, или "туннелирования", частиц через непроницаемое в классической механике препятствие возникают различные интересные эффекты. Из прочно скрепленных ядерными силами ядер урана могут вылетать (протуннелировав через соединяющее протоны и нейтроны поле) альфа-частицы, а в ходе термоядерной реакции отталкивающие друг друга электростатическими силами ядра атомов, напротив, могут подойти на достаточное для реакции расстояние также благодаря "просачиванию" через электромагнитный барьер.

В предлагаемом физиками наномоторе в роли ротора выступает углеродная нанотрубка с приделанными к ней проводящими выступами. Именно на них переходит за счет туннельного эффекта электрон с подходящих к наномотору неподвижных электродов. Его заряд заставляет "ротор" совершить поворот на определенный угол - для туннелирования электрона со следующего электрода и повтора цикла. Как утверждается в пресс-релизе института Форсайта, в перспективе такие моторы окажутся даже эффективнее биологических аналогов и, возможно, в ближайшее время будут созданы и первые экспериментальные образцы.

Микрочипы для медицинских исследований создали из бумаги и скотча

Исследователи из Гарвардского университета создали прототип лабораторного микрочипа для биологических и медицинских исследований с рекордно низкой стоимостью. Технология, описанная в журнале Proceedings of the National Academy of Sciences, использует вместо сложных и дорогих микропереключателей и насосов обыкновенную прессованную бумагу и скотч. Пластинка с системой каналов для перераспределения исследуемой жидкости изготавливается из материалов стоимостью всего три цента.

Разработка микрочипов для проведения биохимических анализов - достаточно бурно развивающееся направление. Их суть довольно проста - на одной пластинке размещаются лунки с микроскопическим количеством реактивов и каналы, по которым перекачивается исследуемая жидкость. Лунки, которые называют биосенсорами, впоследствии служат индикаторами наличия того или иного вещества, причем наряду с довольно простыми соединениями, сенсоры могут избирательно детектировать, например, определенные белки в крайне низких концентрациях. Последнее свойство особенно ценно в сочетании с компактностью схемы: один чип может нести сотни лунок с различными индикаторами и применяться для диагностики сразу целого ряда заболеваний.

Для изготовления нового чипа обычная бумага сначала покрывается недорогим пластиком, способным затвердевать на свету. Далее, по отработанной в электронной промышленности технологии, будущая основа чипа засвечивается ультрафиолетом, в буквальном смысле слова проявляющим каналы и перегородки. Пластик затвердевает, а бумага с образовавшимися дорожками для жидкости складывается в несколько слоев. В ней проделываются соединительные отверстия для слоев и чип практически готов. Его остается только покрыть сверху слоем защитной липкой ленты и положить в упаковку для отправки в лабораторию больницы или исследовательского центра.

Буквально несколько дней назад, 12 декабря, другим коллективом ученых была опубликована работа, в которой они построили микрогидравлическую систему на кремниевой подложке. Внутри чипа были размещены микроскопические насосы и клапаны, сборка и управление которыми осуществлялась внешним магнитным полем. Разработка подобных систем, безусловно, стала важным шагом на пути к будущим сверхминиатюрным анализаторам, но до клинического применения подобной системе еще сравнительно далеко. Устройство же из Гарварда, напротив, крайне просто в изготовлении и дешево. При меньших потенциальных возможностях оно сможет попасть в клиники и лаборатории намного раньше.