Счетчики








Физики уточнили возможные значения массы бозона Хиггса

Группе исследователей под названием DZero, в которую входят 550 ученых из 18 стран мира, удалось получить самое точное на сегодняшний день значение массы W-бозона в рамках одного эксперимента. Опыт был выполнен на ускорителе Тэватрон. Сообщение о научном результате появилось в пресс-релизе лаборатории Ферми, которая курирует работу ускорителя. Новые данные помогут уточнить возможную массу еще не открытого бозона Хиггса.

W-бозоны в физике элементарных частиц являются переносчиками так называемого слабого взаимодействия, которое ответственно, например, за радиоактивный распад ядер некоторых элементов. Масса данного бозона является важным параметром, знание которого необходимо для теоретических предсказаний характеристик еще не открытых частиц.

В рамках эксперимента физики изучали время распада W-бозона, образовавшегося в результате столкновения других элементарных частиц в ускорителе, на электрон и электронное нейтрино. Эти данные позволили физикам установить, что масса бозона составляет примерно 80,401 ГэВ/c2. Последнее означает, что при переходе всей массы W-бозона в энергию по эйнштейновской формуле E=mc2 выделится 80,401 гигаэлектронвольта энергии.

Ошибка нового измерения составила менее 0,05 процента, что является рекордом для измерения массы W-бозона в рамках одного эксперимента. Для достижения необходимой точности исследователи в течение нескольких лет занимались калибровкой детекторов Тэватрона.

Новые данные позволяют уточнить ограничения, накладываемые теорией на значение массы бозона Хиггса. Поиск этой частицы, которая в рамках Стандартной модели ответственна за наличие массы у некоторых своих собратьев, является одной из основных задач Большого адронного коллайдера (БАК).

Кольцевой ускоритель-коллайдер Тэватрон, построенный в 1983 году, расположен в Национальной ускорительной лаборатории Энрико Ферми в штате Иллинойс. После поломки БАК он является самым крупным работающим ускорителем элементарных частиц. Длина кольца ускорителя составляет примерно 6,3 километра. Аналогичный показатель для БАК составляет 27 километров.

Телескоп Spitzer решил загадку углеродных звезд

В центре Млечного Пути впервые обнаружены углеродные звезды. Открытие было сделано при помощи телескопа Spitzer. Собранные им данные также помогли ученым подтвердить одну из теорий, объясняющую поведение планетарных туманностей. Основные результаты ученых представлены в сообщении на сайте проекта Spitzer, а полная версия статьи опубликована в журнале Astronomy & Astrophysics.

Углеродные звезды - это гигантские светила, в атмосфере которых преобладает углерод. Звезды этого типа были обнаружены в других галактиках, однако в Млечном Пути найти их до сих пор не удавалось. Авторы данного исследования использовали инфракрасный спектрограф телескопа Spitzer для анализа излучения, испускаемого 40 планетарными туманностями (звездами, окруженными ионизированной газовой оболочкой), расположенными в нашей галактике. 26 туманностей находились в балдже (вздутии в самом центре спиральных галактик), а 14 - в других частях Млечного Пути.

Материя, окружающая звезду планетарной туманности, очень сильно излучает в инфракрасном диапазоне. Анализируя излучение планетарных туманностей балджа, астрономы смогли определить, что туманности содержат большое количество кристаллических силикатов и полициклических ароматических углеводородов. Эти соединения содержат, в частности, кислород и углерод. Обычно пыль, содержащая одновременно оба эти элемента, встречается только в атмосфере двойных звезд.

Ученые предположили, что относительно тяжелые по сравнению, например, с водородом, элементы в планетарных туманностях не выходят постоянно в их внешнюю часть, что типично для "обычных" звезд. Эти вещества выбрасываются только в момент гибели звезды планетарной туманности. И только после этого ученые могут зафиксировать присутствие более тяжелых элементов. Понимание механизмов выброса в космическое пространство тяжелых элементов важно для построения теорий о возникновении планет, а также жизни на них.