Партнеры

Счетчики








Астрономы увидели процесс формирования планеты в реальном времени

Астрономы, анализирующие данные инфракрасного телескопа Spitzer, смогли "засечь" ранние стадии формирования планеты в реальном времени. Работа ученых принята к публикации в журнал Astrophysical Journal Letters. Коротко основная суть исследования изложена в пресс-релизе NASA.

Ученые наблюдали молодую - не старше двух-трех миллионов лет - звезду LRLL 31, удаленную от Земли на расстояние тысячи световых лет. В регионе, где находится LRLL 31, идет активный процесс звездообразования. Излучение некоторых звезд указывало на наличие вокруг них относительно массивных объектов или же протопланетных дисков. За одной из таких звезд - LRLL 31 - астрономы наблюдали в течение пяти месяцев.

Параметры излучения LRLL 31 изменялись необычным образом, причем очень быстро - смена могла занимать не больше недели. Формирование планет из протопланетных дисков вокруг звезд занимает миллионы лет, поэтому астрономы предположили, что вокруг LRLL 31 обращается неизвестный объект, который "подталкивает" материал диска. Таким объектом может быть вторая звезда или частично сформированная планета.

На ранних стадиях формирования планет они обращаются в пыли, окружающей звезду. Постепенно новые тела собирают на себя все больше материи и расчищают в пыли "дорожки", соответствующие траекториям их движения. В итоге пыль остается только на внешнем крае будущей планетной системы. Наблюдая за LRLL 31, астрономы обнаружили, что характеристики излучения внутренней части этого пылевого "бублика" постоянно изменяются. Ученые предположили, что внутренняя граница диска изменяет свое положение под влиянием обращающейся вокруг LRLL 31 планеты. Если эта гипотеза верна, то молодая планета находится очень близко к звезде - приблизительно в десять раз ближе, чем расположена Земля по отношению к Солнцу.

В дальнейшем астрономы намерены проверить свое предположение при помощи других телескопов. С их помощью они рассчитывают увидеть, изменяется ли положение звезды под воздействием гравитации планеты. Кроме того, дальнейшие наблюдения с использованием телескопа Spitzer позволят установить, являются ли изменения параметров излучения, идущего от LRLL 31, периодическими.

Телескоп Spitzer был запущен в 2003 году. Он работает в инфракрасном диапазоне и может "видеть" сквозь непрозрачную в оптическом диапазоне пыль, заполняющую Вселенную. Чтобы детектировать инфракрасное излучение, сам телескоп должен быть очень холодным. Детекторы Spitzer охлаждались жидким гелием до температуры, близкой к абсолютному нулю. В мае 2009 года гелий закончился, и телескоп перешел на "горячую" схему работы. Его чувствительность при этом упала.


Ученые доказали однонаправленность эволюции

Ученые показали, что изменения, накопленные в ходе эволюции, не могут быть "отменены". Работа исследователей опубликована в журнале Nature. Ее основная суть изложена на портале Nature News.

Авторы работали с белком-рецептором глюкокортикоидов (glucocorticoid receptor - GR). Этот белок отвечает за узнавание различных глюкокортикоидных гормонов. В эволюции GR появился очень давно, и за миллионы лет его последовательность сильно изменилась. Исследователи сравнили последовательности аминокислот ("кирпичиков", из которых состоят белки) в рецепторах у различных организмов и проследили, как происходили изменения.

Изначально GR был способен узнавать два гормона - кортизол и альдостерон. Этот вариант рецептора присутствовал, например, у хрящевых рыб и получил название GR1. В ходе эволюции GR сузил свою "специализацию" и стал узнавать только кортизол. Новый вариант назвали GR2, и он младше GR1 приблизительно на 40 миллионов лет (время изменения можно оценить, исходя из средней частоты приобретения мутаций за единицу времени, которая более или менее постоянна).

В общей сложности, за 40 миллионов лет рецептор накопил 37 мутаций. Для потери способности узнавать альдостерон критическими оказались две. Одна из них меняла пространственную организацию белка таким образом, что он переставал узнавать оба гормона, а вторая возвращала рецептору специфичность к кортизолу.

Исследователи решили "запустить" эволюцию в обратную сторону и вернуть в GR2 две важные для узнавания обоих гормонов аминокислоты. Таким образом они смоделировали ситуацию, когда эволюционное давление, заставившее GR1 превратиться в GR2, исчезло. Оказалось, что после двух замен GR2 вообще переставал узнавать гормоны - как кортизол, так и альдостерон.

Причиной полной потери функциональности оказались другие изменения, накопленные рецептором. Пять мутаций, не оказывающих влияния на функционирование белка, тем не менее слегка изменяют его структуру. Ученые вырастили кристаллы старого и нового вариантов белков (с помощью кристаллов биологи могут изучить пространственную организацию молекул). Оказалось, что при возвращении в GR2 старых вариантов аминокислот, получающаяся в итоге конфигурация не позволяет рецептору выполнять свои функции.

Таким образом, для того чтобы GR2 приобрел исходную специфичность, в нем должны одновременно измениться сразу несколько аминокислот. Такой "единый порыв" является крайне маловероятным.

Совсем недавно другой коллектив ученых также получил доказательства невозможности "обратной перемотки" эволюции. Исследователи работали с плодовыми мушками. В лаборатории они провели искусственную эволюцию, добившись развития у насекомых определенных признаков. После того, как ученые сняли давление отбора, мухи не вернулись к исходному набору признаков.