Партнеры

Счетчики








Квантовый компьютер научили работе с графикой

Ученые из Массачусетского технологического института создали алгоритм решения системы линейных уравнений для квантовых компьютеров. Последнее может означать, что данные вычислительные машины могут использоваться для обработки графики. Статья ученых появилась в журнале Physical Review Letters, а ее краткое изложение приводится в пресс-релизе на сайте института.

Квантовые компьютеры - гипотетические вычислительные устройства, работа которых базируется на явлениях квантовой механики. На заре создания теории предполагалось, что подобные машины будут превосходить классические компьютеры в разы. Однако, за пределами криптографии (в которой квантовые компьютеры могут применяться для быстрого разложения чисел на множители) у квантовых компьютеров не обнаружилось существенных преимуществ перед классическими машинами.

В рамках новой работы ученым удалось создать алгоритм решения системы обыкновенных линейных уравнений c N неизвестными за время порядка lg N. Для сравнения, лучшие классические алгоритмы работают за время порядка N. Таким образом, например, для решения системы с 1010 неизвестными обычный компьютер выполнит несколько десятков миллиардов действий, в то время как его квантовый "коллега" - несколько десятков. По словам ученых, учитывая, что системы линейных уравнений используются, например, при обработке изображений, создании 3D графики и предсказании погоды, алгоритм делает квантовые компьютеры крайне эффективными в данных областях.

Работа была воспринята специалистами по вопросу крайне неоднозначно. Многие отмечают, что решение системы уравнений будет храниться в памяти квантового компьютера в виде суперпозиций состояний кубитов, что означает отсутствие точного решения в привычном понимании этого слова - каждое состояние реализуется с некоторой вероятностью. Чтобы "извлечь" классическое решение из памяти квантового компьютера, может потребоваться огромное число шагов, которое съест выигрыш от быстрого вычисления. Аналогичным образом, "загрузка" информации в кубиты также может оказаться очень ресурсоемким процессом.

Для сравнения, квантовый алгоритм проверки простоты числа работает следующим образом: он либо предъявляет разложение числа на множители, либо выдает неопределенный ответ (который можно легко распознать). Последнее означает, что число с вероятностью 1/2 простое. Если, применив алгоритм 100 раз, неопределенный ответ был получен все 100 раз, то можно утверждать, что число простое с вероятностью 1 - 1/2100.

Физики объяснили работу фотонного термоса

Физикам удалось теоретически обосновать работу фотонного термоса - аналога обычного термоса, в котором вместо вакуума для изоляции используются конструкция из так называемых фотонных кристаллов. Статья исследователей появилась в журнале Physical Review B, а ее краткое изложение приводит Physical Review Focus.

В рамках исследования ученые использовали тот факт, что у фотонных кристаллов (к подобным кристаллам относится, например, опал) для длин волн фотонов имеются так называемые запрещенные зоны. Если на поверхность такого материала падает фотон с запрещенной длиной волны, то он просто отражается от нее. В работе 2008 года эта же группа исследователей установила: конструкция из 10 слоев фотонных кристаллов толщиной около одного микрона, между которыми располагается вакуум, пропускает тепло в два раза хуже, чем просто вакуум.

Практическое применение подобных материалов для теплоизоляции, однако, не представлялось возможным, поскольку не существовало теории, описывающей свойства таких конструкций. Теперь физикам удалось восполнить этот пробел. В частности, они выяснили, что диапазон частот электромагнитного излучения, которое пробивается сквозь слои вакуума и кристаллов, не зависит от толщины слоев, а определяется коэффициентом преломления материала.

В обычном термосе вакуум между стенками препятствует теплообмену между содержимым сосуда и внешней средой. Однако вакуум не является препятствием для теплового излучения (электромагнитного излучения в инфракрасном диапазоне). Использование нового материала позволят заметно снизить потери от излучения внутри термоса.

Совсем недавно ученые из Калифорнийского технологического института заставили сплав металла перестать расширяться при нагревании. При этом механизм инварного поведения (слабо расширяющиеся сплавы называют инварными) оказался сугубо магнитным явлением, обусловленным структурой материала.